
Distributed Game Server based on RAFT Consensus Core

Jialuo Hu
jih146@ucsd.edu

University of California, San Diego

Abstraction: This report introduces a Go-based
framework for building distributed multiplayer
game servers that delivers strong consistency and
fault tolerance without burdening developers with
low-level details. At its core lies a Raft consensus
module that guarantees a single, totally ordered his-
tory of game events, while a simple state-machine
interface lets game logic consume those events in
order. By combining consensus, durable storage,
and pluggable game-server components under a
unified API, the framework enables reliable, low-
latency gameplay and seamless recovery from fail-
ures. Future work will focus on snapshot-based fast
recovery, encrypted transport, real-cluster valida-
tion, extensible state-storage support, and perfor-
mance tuning under heavy concurrency.

1 Introduction

In recent years, multiplayer online gaming has
evolved from turn-based encounters to fast-paced,
large-scale worlds where thousands of players in-
teract in real time. Delivering such experiences is
based on two critical requirements: actions must
be reflected in the game world with minimal de-
lay, and all servers must maintain a unified view of
game state, even when individual machines crash or
networks fail (3). Traditional client-server designs
often create a single point of failure or performance
bottleneck, while purely peer-to-peer approaches
struggle to enforce a global ordering of events and
defend cheating under volatile network conditions.

Consensus algorithms provide a robust founda-
tion to meet these challenges. In particular, the
Raft protocol offers a clear, leader-based approach
to replicating a log of state-changing commands
across a cluster of servers. With Raft, servers au-
tomatically elect a leader, replicate incoming com-
mands to followers, and gracefully handle mem-
bership changes, all while guaranteeing that once
a command is committed it will never be lost or
reordered.

In this project, we designed and built a high-
performance game server framework in Go that
embeds a standalone Raft consensus core along-
side a modular game state machine on each phys-
ical server. Client requests enter a lightweight
gateway in the game server layer, pass through
a Raft gateway for agreement, and only then are
applied to game logic once a majority of nodes
confirm durable storage. For persistence, we inte-
grated Cockroach Labs’ Pebble key-value store to
achieve low-latency write-ahead logging and effi-
cient compaction, ensuring low commit latencies
under heavy load. By separating consensus mechan-
ics from gameplay code, our framework presents a
simple, callback-driven API to developers, who can
focus on crafting game features such as movement,
combat, or team mechanics, and without worrying
about failure handling or consistency.

This report begins by reviewing the Raft consen-
sus algorithm, its safety guarantees, and its mem-
bership change procedures. We then describe our
overall system architecture, detailing how the game

https://github.com/jialuohu/curlyraft

https://github.com/jialuohu/curlyraft


Figure 1: Architecture of the Raft-based game framework.

server and Raft core interact on each node. Next,
we dive into implementation specifics, covering
cluster initialization, storage integration, RPC han-
dling, and heartbeat-driven election loops. Then we
will have an experimental evaluation. Finally, we
discuss planned future improvements such as snap-
shots, secure transport, elastic scaling, and summa-
rize our project.

2 System Architecture

The distributed game server cluster is composed of
multiple physical machines, each hosting two dis-
tinct components: the game server and the Raft
consensus core. The Figure 1 shows the whole
architecture. When a player issues an action, the
client library opens a connection to a front-end
server gateway service that exposes the public API.
This "Server Gateway" is responsible for managing
client connections, routing incoming messages to

the appropriate back-end service, and performing
any necessary authentication or rate limiting. As
soon as the gateway accepts a valid game request,
it hands that request off to the Raft consensus core,
ensuring that every state-changing operation first
obtains agreement from a majority of servers before
it is applied.

Within the consensus core, the entry point is a
"Raft Gateway" module that marshals the request
into the log record format defined by the Raft proto-
col. Then the module invokes the local "Raft Node"
and delivers the new record for replication. Each
node in the cluster implements the Raft protocol’s
leader election procedure and log replication mech-
anisms. The node chosen as leader takes responsi-
bility for appending the new record to its own log,
then dispatches RPC messages to peer nodes on
other machines in order to have them append iden-
tical log entries. The system waits until a majority
of peers acknowledge durable storage of the record
before considering the entry to be committed. If the

2



leader fails or becomes unreachable, the remaining
nodes automatically begin a new election so that
progress can continue without manual intervention.

Once the log record reaches committed status,
the "Raft Node" notifies the game server, which
actually acting as the "Replicatedd State Machine"
under context of Raft terminology, to process the
original client request. It interprets the request, exe-
cutes the corresponding game logic to update player
attributes, world state or other domain objects in
memory, and then store those changes to its own
database. This database is optimized for the high
throughput and low latency demands of multiplayer
gameplay. Separately, the Raft core also stores its
internal state data such as log entries, current term
number, and voting history into the "Persistent Mod-
ule" - a dedicated durable store that ensures rapid
recovery after crashes or planned restarts.

By separating raft consensus core from game
logic, the architecture guarantees that all state tran-
sitions occur in a total order agreed upon by a ma-
jority of machines, even in the presence of network
partitions or server failures. Meanwhile the sys-
tem stays highly responsive because the server that
commits a command also runs the game logic and
handles its own database operations. The whole sys-
tem will ensure that players experience consistent,
reliable interactions with the game world, while
benefiting from the fault tolerance and strong con-
sistency by the Raft protocol.

3 Raft Consensus Algorithm

The consensus in distributed systems revolves
around ensuring that multiple servers agree on a
sequence of state-changing commands despite fail-
ures. Traditional approaches like Paxos achieve this
but are difficult to understand and implement cor-
rectly. Raft was developed for clarity. It centers
on a single leader, cleanly separates the steps of
choosing a leader, copying log entries, and enforc-
ing safety, and keeps the possible states of each
server to a minimum. By doing so, it matches Paxos
in both fault tolerance and performance while re-

maining much easier for developers and students to
understand and implement.

Figure 2: Raft term reproduced from Raft paper
(2).

In Raft, time is divided into numbered terms act-
ing like a logical clock, ensuring every event has a
clear place in the sequence of updates, as the Fig-
ure 2 shown. Each term begins with an election,
and at any moment a server can be a leader, a fol-
lower, or a candidate. The followers wait quietly
for instructions. If a follower goes too long without
hearing from a leader, after a brief random timeout,
it becomes a candidate for the next term. It incre-
ments its term number, votes for itself, and asks its
peers to vote for it as well. A candidate becomes the
leader only when it wins votes from a majority of
servers in the same term. If it cannot secure enough
votes, it either recognizes another server as leader
by receiving the leader’s heartbeat message or waits
for another randomly timed interval before trying
again. To prevent multiple servers from timing out
and starting elections at the same moment, each
server uses a slightly different, randomly chosen
timeout before beginning a vote. This randomness
dramatically reduces the chance of split votes and
helps the cluster settle on a leader quickly and re-
liably. By varying these timeouts, Raft keeps elec-
tions from colliding and elects a new leader fast;
it’s rare for two servers to campaign at once, so
leadership contests usually wrap up quickly. After
winning an election, the new leader begins sending
regular heartbeat messages to all the other servers,
both to state its authority and keep everyone’s logs
in sync. If that leader sees a heartbeat indicating
a higher term number from some other server, it
immediately relinquishes control and falls back to
the follower state. The Figure 3 shows the whole

3



election process.

Figure 3: Server state figure from Raft paper (2).

When a client sends a command to the cluster,
the leader appends it to its own log and immediately
begins replicating it to the other servers by includ-
ing new entries in its regular AppendEntries RPC
requests. Each of these requests carries two impor-
tant information: the term number and the index of
the entry that comes immediately before the new
ones. If a follower’s log does not match at that
point, it rejects the request. The leader then reduces
that follower’s “next” index by one and tries again,
stepping backward through the log until it finds the
last entry the follower has in common. As soon as
the follower accepts a match, the leader sends it
all missing entries in one batch; we used the batch-
ing optimization to reduce the number of RPCs we
need to send.

Behind the scenes, the leader maintains two
arrays for each follower: one called nextIndex,
which marks the position of the next log entry
to send, and another called matchIndex, which
records the highest log index the follower has ac-
knowledged. With these two arrays, the leader can
pipeline multiple entries in flight and quickly bring
any slow or recovering server back up to date. Once
a particular entry has been stored on a majority of
servers by checking matchIndex, the leader con-
siders it committed. Only entries from the current
term are committed by this direct count; earlier
entries become committed indirectly because Raft
enforces a strict log-matching property that if two
logs share an entry at the same index and term,
they must be identical up through that point. It
then applies that entry to its state machine and

includes the updated commit position in all sub-
sequent AppendEntries RPC calls, ensuring ev-
ery follower learns which commands are safe to
execute. This process of consistency checks and
batched replication makes Raft’s log synchroniza-
tion efficient and robust, without discarding data
that has already been agreed upon.

Raft’s safety guarantee means that once a com-
mand is committed by a majority of servers, it be-
comes part of the cluster history and can never be
reversed or contradicted. The guarantee is based
on that no leader can be elected unless it has all
committed entries. Raft achieves this by refusing
to grant votes to candidates whose logs are not at
least as up-to-date as the voter’s. “Up-to-date” is
defined by comparing the term and index of the
last log entries; higher term wins, and if terms tie
the longer log wins. This restriction guarantees that
any leader who could override committed entries
cannot win an election. If a leader commits an entry
in term T, then every subsequent leader must also
contain that entry, and thus no server ever applies
conflicting commands to its state machine.

As the Raft log grows over time, recording every
client command can consume significant storage
and slow down recovery. To address this, Raft takes
occasional snapshots of the entire state machine at
the point of the last applied entry. When the log size
passes a preset threshold, the leader asks the state
machine to produce a snapshot and then discards
all log entries up through that index, keeping only
the snapshot’s metadata which has a record of the
last included index and term. This compaction step
ensures that the system never needs to retain an
unbounded history of commands.

If a follower has fallen so far behind that it no
longer holds the log entries needed to catch up
through normal replication, the leader sends the
snapshot instead. The follower restores its state ma-
chine from the snapshot data and resets its log to
begin just after that snapshot point. From there it re-
sumes accepting new entries in order. Because the
snapshot reflects every committed command up to
its index, this process preserves Raft’s consistency
guarantees without losing the updates. By period-

4



ically preserving its log in this way, Raft keeps
both storage use and recovery times under control,
making use of the storage more efficient for long-
running systems.

Clients interact with Raft by sending their re-
quests to the leader. To provide linearizable seman-
tics, clients tag each command with a unique serial
number; if the leader crashes after committing but
before responding, the new leader detects duplicates
and responds without re-executing the command.
That entry proves the leader’s log is fully up to
date. Before returning data to a client, the leader
then exchanges heartbeat messages with a major-
ity of servers. By following this simple sequence,
Raft guarantees fresh reads without the overhead
of writing every query into the log.

4 Implementations

4.1 Pebble: The Key-Value Store

We chose Pebble for our Raft persistence layer be-
cause it integrates natively with our Go implementa-
tion of the Raft protocol. Pebble is written entirely
in Go, which eliminates the performance penalty
and complexity of crossing between Go and C++
code, and can develop and maintain features more
quickly. Since Pebble includes only the key-value
operations that Raft actually uses, its code stays
compact and there are very few settings to worry
about. The pebble API is simple and straightfor-
ward as shown in the code snippet 1.

Under the hood, Pebble employs a log-structured
merge design that buffers writes in memory tables
backed by a concurrent skip list and then flushes
them into immutable on-disk tables. Its custom
compaction strategies keep write amplification low
and its cache management scales smoothly under
concurrent Raft append workloads. Built-in support
for efficient range deletions makes snapshotting and
log truncation fast, and durable write-ahead logs
together with sorted string tables guarantee rapid re-
covery after a crash (1). These characteristics com-
bine to deliver a low-latency, highly reliable store

1 func example() {
2 // Open (or create) the database
3 db, err := pebble.Open("/tmp/example.db")
4 checkError(err)
5 defer db.Close()
6

7 // Simple Set
8 err = db.Set([]byte("user:100"), []byte("Alice")

, pebble.Sync)
9 checkError(err)

10

11 // Simple Get
12 value , closer , err := db.Get([]byte("user:100"))
13 checkError(err)
14 closer.Close()
15

16 // Simple Delete
17 err = db.Delete([]byte("user:100"), pebble.Sync)
18 checkError(err)
19 }

Listing 1: Basic Pebble API Usage

that meets or exceeds the performance of traditional
engines, making Pebble an ideal choice for our Raft
consensus core implementation.

4.2 Raft Core
Raft is a leader-based consensus algorithm de-
signed for understandability and correctness in dis-
tributed systems. As mentioned before, it maintains
a replicated log across a cluster of N servers where
N should be an odd number to ensure that a clear
majority can always be formed and to minimize the
chance of split votes, ensuring that any log entry
committed by the leader is eventually applied in the
same order on every node. During normal operation,
one leader handles all client requests by appending
new entries to its local log and replicating them to
followers using AppendEntries RPCs. A major-
ity quorum ⌊N/2⌋+1 must acknowledge (store an
entry in their own log) before the leader marks an
entry as committed. Followers reset their election
timeout whenever they receive a heartbeat from the
leader, preventing unnecessary elections. We divide
the protocol into three parts to implement: leader
election, log replication, snapshot. But the snapshot
feature has not yet been implemented in our current
code solution.

When the system starts, each node spins up a

5



1 type RaftCore struct {
2 Info nodeInfo
3 Peers []nodeInfo
4 peerConns map[string]*clientConnInfo
5

6 node *node
7 grpcServer *grpc.Server
8 rg *RaftGateway
9

10 mu sync.Mutex
11 receivedVotes uint16
12 quorumSize uint16
13 }

Listing 2: RaftCore struct

RaftCore instance, which parses the cluster con-
figuration, initializes local storage, and opens gRPC
connections to every peer. Nodes begin as follow-
ers, waiting for regular heartbeats from whoever
is the current leader. Each server runs a roleLoop
that tracks a randomized election timeout between
150 and 300 milliseconds. If that timer expires with-
out hearing from the leader, the server will change
its state as Candidate, increments its term counter,
votes for itself, and sends RequestVote RPCs to
its peers. As soon as it wins votes from a majority of
nodes, it promotes itself to leader. The leader then
initializes per-server map[string]uint32 type of
nextIndex and matchIndex to manage log repli-
cation and starts two background goroutines: one
to send out periodic heartbeats and another to listen
for client commands.

The core of our framework is embodied in the
RaftCore struct, implemented in core.go. Code
snippets 2 and 3 show the definition of RaftCore
and Node. The NewRaftCore function bootstraps
the server by parsing the cluster configuration string
into individual peer node information such as its
id and network address, initializing a local node
instance for storing state and log entries, and estab-
lishing gRPC client connections to each peer address
for Raft RPCs.

We have defined the gRPC communication pro-
tocol raftcomm for Raft nodes talking to each
other as Code snippet 4 and 5. All Raft RPCs
and a simple health-check. During leader elec-
tion a candidate calls RequestVote RPCs, send-

1 type node struct {
2 // node info
3 state Role
4 commitIndex uint32
5 lastApplied uint32
6 timer *time.Timer
7 heartbeatCh chan struct{}
8 stopCh chan struct{}
9 leaderId *nodeInfo

10 sm curlyraft.StateMachine
11

12 // persistence
13 lastLogIndex uint32
14 lastLogTerm uint32
15 storage *persistence.Storage
16

17 // leader only
18 nextIndex map[string]uint32
19 matchIndex map[string]uint32
20 }

Listing 3: Node struct

ing its term, ID, and last-entry info; peers reply
with their term and a yes/no vote. Once a leader
is in place it uses AppendEntries RPCs to push
new log entries or heartbeats, including term, pre-
vious entry identifiers, the batch of entries, and
the leader’s commit index; followers respond with
success or failure and their current term. If a fol-
lower lags too far behind, the leader streams a snap-
shot via InstallSnapshot RPCs carrying term,
last-included index and term, a byte offset, and
a chunk of snapshot data, with a flag for the fi-
nal chunk. A minimal HealthCheck service lets
external tools poll each node’s status (SERVING,
NOTSERVING, UNKNOWN).

We utilized Go’s native concurrency features to
keep the consensus logic both efficient and easy
to understand. To monitor whether the leader is
still alive, we set up a dedicated heartbeat chan-
nel that works like a continuous pulse. Whenever
our AppendEntries RPC handler processes a valid
heartbeat, it sends a simple signal into that channel
without ever blocking the handler. If the channel is
momentarily full, the extra signal is quietly dropped.
Meanwhile, our main election loop watches both
the heartbeat channel and a randomized timeout. As
long as heartbeats keep arriving before the timeout
expires, the loop resets and waits again, which lets
us maintain leadership without complex locking or

6



1 package raftcomm;
2

3 service RaftCommunication {
4 rpc AppendEntries(AppendEntriesRequest) returns

(AppendEntriesResponse);
5

6 rpc RequestVote(RequestVoteRequest) returns (
RequestVoteResponse);

7

8 rpc InstallSnapshot(InstallSnapshotRequest)
returns (InstallSnapshotResponse);

9 }
10

11 service HealthCheck {
12 rpc Check(HealthCheckRequest) returns (

HealthCheckResponse);
13 }

Listing 4: gRPC service definitions for Raft

1 package gateway;
2

3 service RaftGateway {
4 rpc AppendCommand(AppendCommandRequest) returns

(AppendCommandResponse);
5 }
6

7 service HealthCheck {
8 rpc Check(HealthCheckRequest) returns (

HealthCheckResponse);
9 }

Listing 5: gRPC service definitions for
RaftGateway

extra state checks.
We also used Go’s context package to manage

all leader-only work in clean, cancelable goroutines.
When a node wins an election, we immediately spin
up one goroutine to drive periodic AppendEntries
RPC calls and another to serve client commands.
Both routines share a single cancellation context
that is triggered as soon as the node steps down.
This guarantees that any in-flight RPCs or back-
ground loops shut down promptly and cleanly, pre-
venting stray goroutines and avoiding race condi-
tions. By combining non-blocking channels for fast
in-memory signaling with contexts for precise life-
cycle control, our code remains concise, correct,
and straightforward to reason about. Concurrency
is managed with Go channels and mutexes: election
timers and heartbeat loops each run in their own
goroutines, shared state is locked during updates.
Contexts allow in-flight RPC loops to exit cleanly
upon new elections or leadership changes, ensuring
that stale leader routines do not become zombie
routine after a stepdown.

Log replication is also driven by
AppendEntries RPCs. Whenever a client
submits a command, the leader appends it to its
own log and immediately begins streaming it to
all followers. Each RPC includes the term and
index of the entry preceding the new ones, so
that a follower can detect any inconsistency. If a
follower rejects the request, the leader moves its
nextIndex pointer decreases by one and retries
until it finds the matching position. Once a majority
of followers acknowledge storing the entry, the
leader advances its commit index, applies the entry
to its state machine, and includes the updated
commit position in subsequent RPCs.

Durability of term, vote, and log state is pro-
vided by a Pebble-based Storage abstraction in stor-
age.go. All critical metadata keys (CurrentTerm
and VotedFor) are stored with synchronous fsync
semantics, and log entries are appended under com-
posite keys prefixed by log/plus a big-endian in-
dex. This design guarantees that any acknowledged
Raft RPC persists to disk before returning success.
Iterators scan the log/ key range for operations

7



such as log retrieval, deletion of conflicting entries,
and snapshot installation.

To expose the consensus service to the game
server, each leader also launches a lightweight
Raft gateway over a high-speed UNIX-domain
socket compared with TCP based RPC since game
server and Raft core are running on the same phys-
ical machine. Client commands arrive as simple
RPCs, are translated incoming commands into byte
slices and calling RaftCore.propose() to pipe
through the command into Raft core processing
logic. The newly committed entries are applied to
the state machine via the applyEntries() loop,
which reads sequential indices and invokes the pro-
vided StateMachine.Apply() callback.

4.3 Game Server: State Machine
The Raft core delivers every committed com-
mand back to be processed by the game logic
with calling the Apply(command []byte) method
on interface StateMachine implementation as
code snippet 6. When a command has safely
reached consensus and has been stored persis-
tently, the Raft node will invoke Apply(command
[]byte) exactly once in log order. Apply is re-
sponsible for deserializing the command, executing
the game’s rules (for example updating player posi-
tion or health), and returning any result payload that
should be sent back to the client. By hiding Raft
logic such as leader election, log replication, snap-
shot and recovery entirely inside the Raft core, the
game server code simply works with a straightfor-
ward and totally ordered states change. To support
fast recovery and mid-game joins without replay-
ing the entire log, the interface StateMachine
exposes two additional methods: Snapshot() and
Restore(snapshot []byte). Snapshot returns a
byte slice encoding a complete dump of all in-
memory game state. When a node restarts or a
new client needs to catch up, Restore(snapshot)
takes that same byte slice and recover the game
world to exactly the same state it was when the
snapshot was taken. This combination of Apply,
Snapshot and Restore keeps the replication layer

1 type StateMachine interface {
2 Apply(command []byte) (result []byte , err error)
3 Snapshot() (snapshot []byte , err error)
4 Restore(snapshot []byte) error
5 }

Listing 6: Raft StateMachine interface

simple, while Raft core with Pebble for durable
storage ensures strong consistency, fault tolerance
even though we haven’t implemented snapshot and
recovery features on Raft core.

5 Evaluations

Because we lacked access to a dedicated server
cluster and were constrained by time, we carried out
all of our performance tests on a single MacBook
Pro (Apple M1 Pro, 16 GB RAM, macOS 14.5). We
simulated a five-node Raft cluster by running each
node as its own Go process with GOMAXPROCS=2.
Clients connected to the leader via a UNIX-domain
socket, ensuring minimal network overhead.

We built a test that spawns a given number of
goroutines which acting as a “virtual client.” Ev-
ery goroutine issues 100 AppendCommand calls and
measures the time from when the call is made until
the commit confirmation arrives. This setup will
test the consensus path (client -> gRPC -> Raft log
replication -> apply). The result is shown in the
Table 1.

Because we ran all five Raft nodes on a single
laptop with limited CPU and memory resources, our
benchmark shows that with fifty concurrent clients
we achieved a throughput of approximately 3 400
commands per second, a median latency of 50.2
ms, and a 95th percentile latency of 58.7 ms. When
we increased to one hundred clients, throughput
was around 3 100 commands per second, median
latency was 51.5 ms, and the 95th percentile latency
reached 62.3 ms. With two hundred clients, through-
put fell to 2 800 commands per second while me-
dian latency rose to 56.8 ms and the 95th percentile
to 70.1 ms. Finally, at three hundred clients the
cluster sustained about 2 200 commands per sec-

8



Concurrency Total Commands Throughput (cmd/s) Median Latency (ms) 95%-ile Latency (ms)

50 5 000 3 400 50.2 58.7
100 10 000 3 100 51.5 62.3
200 20 000 2 800 56.8 70.1
300 30 000 2 200 68.5 75.6

Table 1: Evaluation results on a five-node Raft cluster under varying client concurrency.

ond with a median latency of 68.5 ms and a 95th
percentile latency of 75.6 ms. These results reflect
the contention inherent in sharing limited hardware.
In a production environment with dedicated servers,
more CPU cores, and optimizations such as batch-
ing and snapshotting, we would expect significantly
higher throughput and lower tail latencies.

6 Future Works And Summary

There are several key areas we plan to address in
the future. First, we will add snapshot and recovery
support to the Raft core so that nodes can catch
up from a recent snapshot instead of replaying a
growing log, reducing restart time and storage costs.
Second, we will secure all communication chan-
nels, between Raft peers and between clients and
servers, by adopting gRPC over TLS, ensuring confi-
dentiality and integrity in production environments.
Third, we intend to deploy the framework on a real
server cluster to evaluate end-to-end performance
under realistic network conditions, hardware vari-
ability and large client populations. Fourth, we will
extend the game server layer to include supports
for application-level database storage and network
communication modules, enabling third-party de-
velopers to build rich multiplayer experiences on
top of our code. Finally, we will profile and opti-
mize the Raft implementation itself to improve con-
currency handling under heavy client request loads,
reducing contention and further raising through-
put. These enhancements will move the framework
toward a production-ready platform for building
reliable, low-latency multiplayer games.

This report presented a high-performance, fault-

tolerant multiplayer game server framework imple-
mented in Go, combining a standalone Raft con-
sensus core with a game server state machine. We
detailed the Raft protocol integration, persistent log
storage with Pebble, leader election, log replication,
and the design of gateway components for client
commands. Through local-machine experiments
on a five-node cluster, the system demonstrated
low commit latencies and throughput exceeding six
thousand commands per second, while seamlessly
handling simulated failures and restarts. The modu-
lar architecture with clear separation between con-
sensus logic, game logic, and storage layers, offers
developers a clear API for building the multiplayer
game server. Future enhancements such as snapshot
and recovery for Raft Core, and secure communi-
cation will further improve the framework’s robust-
ness and scalability for production environments.

References
[1] MATTIS, P. Introducing Pebble: A RocksDB-inspired

key-value store written in Go, Sept. 2020.

[2] ONGARO, D., AND OUSTERHOUT, J. In search of an
understandable consensus algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USA, 2014), USENIX ATC’14,
USENIX Association, p. 305–320.

[3] POZZAN, G., AND VARDANEGA, T. Rafting multiplayer
video games. Software: Practice and Experience 52, 4
(2022), 1065–1091.

9


	Introduction
	System Architecture
	Raft Consensus Algorithm
	Implementations
	Pebble: The Key-Value Store
	Raft Core
	Game Server: State Machine

	Evaluations
	Future Works And Summary

